Scaling zkSNARKs through Application and Proof System Co-Design
This research introduces "silently verifiable proofs" and a co-design approach to drastically reduce communication costs for scalable, privacy-preserving analytics.
Efficient Threshold Signatures Enhance Decentralized Application Security
This research optimizes threshold ECDSA by leveraging homomorphic encryption, enabling robust, efficient distributed signing with reduced communication overhead for decentralized applications.
Enhancing Quantum Oblivious Transfer with Efficient One-Way Function Commitment Schemes
Optimized commitment schemes using one-way functions significantly enhance quantum oblivious transfer efficiency, advancing secure privacy-preserving communication.
Lattice-Based Anonymous Authentication Enables Dynamic User Management
This research introduces the first lattice-based k-times anonymous authentication scheme supporting dynamic user management and post-quantum security, enhancing privacy systems.
Zero-Knowledge Proof of Training Secures Federated Consensus
The Zero-Knowledge Proof of Training consensus mechanism uses zk-SNARKs to prove model performance without revealing private data, solving the privacy-utility conflict in decentralized computation.
Zero-Knowledge Proof of Training Secures Private Federated Consensus
A novel Zero-Knowledge Proof of Training (ZKPoT) mechanism leverages zk-SNARKs to validate machine learning contributions privately, enabling a scalable, decentralized AI framework.
Zero-Knowledge Proof of Training Secures Decentralized AI Consensus
A new Zero-Knowledge Proof of Training (ZKPoT) consensus mechanism leverages zk-SNARKs to cryptographically verify model performance, eliminating Proof-of-Stake centralization and preserving data privacy in decentralized machine learning.
Zero-Knowledge Proof of Training Secures Decentralized Federated Learning Consensus
ZKPoT uses zk-SNARKs to verify decentralized model accuracy without revealing private data, solving the efficiency-privacy trade-off in federated learning.
Zero-Knowledge Proof of Training Secures Private Decentralized Federated Learning Consensus
ZKPoT introduces a zk-SNARK-based consensus mechanism that proves model accuracy without revealing private data, resolving the critical privacy-accuracy trade-off in decentralized AI.
