Constant-Size Zero-Knowledge Set Membership Proofs Secure Resource-Constrained Networks
A novel OR-aggregation protocol leverages Sigma protocols to achieve constant proof size and verification time, unlocking scalable, private IoT data integrity.
Zero-Knowledge Proof of Training Secures Decentralized Machine Learning Integrity
The Zero-Knowledge Proof of Training (ZKPoT) mechanism leverages zk-SNARKs to validate model accuracy without exposing private data, enabling provably secure on-chain AI.
Zero-Knowledge Proof of Training Secures Private Decentralized Federated Learning Consensus
ZKPoT introduces a zk-SNARK-based consensus mechanism that proves model accuracy without revealing private data, resolving the critical privacy-accuracy trade-off in decentralized AI.
Zero-Knowledge Proof of Training Secures Private Federated Learning Consensus
ZKPoT consensus validates machine learning contributions privately using zk-SNARKs, balancing efficiency, security, and data privacy for decentralized AI.
Zero-Knowledge Proof of Training Secures Private Decentralized Federated Learning
ZKPoT consensus verifiably proves model contribution quality via zk-SNARKs, fundamentally securing private, scalable decentralized AI.
Zero-Knowledge Proof of Training Secures Decentralized Federated Learning
ZKPoT consensus uses zk-SNARKs to verify machine learning contributions privately, resolving the privacy-verifiability trade-off for decentralized AI.
Zero-Knowledge Oracles Secure Cross-Chain Communication with Quantum Randomness and Restaking
V-ZOR integrates ZKPs, quantum entropy, and restaking to enable cryptographically verifiable, trust-minimized off-chain data delivery across decentralized systems.
Zero-Knowledge Proof of Training Secures Decentralized Federated Learning Consensus
ZKPoT uses zk-SNARKs to verify decentralized model accuracy without revealing private data, solving the efficiency-privacy trade-off in federated learning.
Zero-Knowledge Proof of Training Secures Decentralized AI Consensus
A new Zero-Knowledge Proof of Training (ZKPoT) consensus mechanism leverages zk-SNARKs to cryptographically verify model performance, eliminating Proof-of-Stake centralization and preserving data privacy in decentralized machine learning.
