Zero-Knowledge Proof of Training Secures Private Decentralized Federated Learning
ZKPoT consensus verifiably proves model contribution quality via zk-SNARKs, fundamentally securing private, scalable decentralized AI.
Zero-Knowledge Proof of Training Secures Decentralized Federated Learning
ZKPoT consensus uses zk-SNARKs to verify machine learning contributions privately, resolving the privacy-verifiability trade-off for decentralized AI.
Folding Schemes Enable Efficient Recursive Zero-Knowledge Computation
Introducing folding schemes, a novel cryptographic primitive, dramatically reduces recursive proof overhead, enabling practical, constant-cost verifiable computation.
Formal MEV Theory Enables Provable Security against Transaction Reordering Attacks
A formal, abstract MEV theory rigorously defines adversarial gain via knowledge axiomatization, enabling proofs of smart contract security.
Zero-Knowledge Proof of Training Secures Decentralized Federated Learning Consensus
ZKPoT uses zk-SNARKs to verify decentralized model accuracy without revealing private data, solving the efficiency-privacy trade-off in federated learning.
Zero-Knowledge Proof of Training Secures Decentralized AI Consensus
A new Zero-Knowledge Proof of Training (ZKPoT) consensus mechanism leverages zk-SNARKs to cryptographically verify model performance, eliminating Proof-of-Stake centralization and preserving data privacy in decentralized machine learning.
Compositional Formal Verification Secures Complex DAG Consensus Protocols
This framework modularizes DAG consensus proofs into reusable components, dramatically reducing verification effort and ensuring robust protocol safety.
Zero-Knowledge Proof of Training Secures Federated Learning Consensus
ZKPoT uses zk-SNARKs to verify model contributions privately, eliminating the trade-off between decentralized AI privacy and consensus efficiency.
Zero-Knowledge Proof of Training Secures Private Federated Consensus
A novel Zero-Knowledge Proof of Training (ZKPoT) mechanism leverages zk-SNARKs to validate machine learning contributions privately, enabling a scalable, decentralized AI framework.