Zero-Knowledge Proof of Training Secures Private Decentralized Machine Learning
ZKPoT consensus uses zk-SNARKs to prove model accuracy privately, resolving the privacy-utility-efficiency trilemma for federated learning.
ZK Proof of Training Secures Private Federated Learning Consensus
ZKPoT uses zk-SNARKs to verify model contributions without revealing data, solving the privacy-efficiency trade-off for decentralized AI.
Zero-Knowledge Proof of Training Secures Decentralized AI Consensus Privacy
The ZKPoT mechanism leverages zk-SNARKs to cryptographically verify model training contribution, solving the privacy-centralization dilemma in decentralized AI.
