Briefing

The core problem addressed is the susceptibility of First-Come-First-Served (FCFS) transaction ordering in Layer-2 rollups to Maximal Extractable Value (MEV) extraction, specifically through front-running enabled by network latency advantages and transaction spamming. The foundational breakthrough is the introduction of Fairness Granularity , a mechanism that quantifies and applies a time interval, or burst period , to batch transactions, treating all events within that slot as simultaneous. This new model decouples transaction priority from the precise receive time, forcing a selection mechanism (like random choice) within the batch. The single most important implication is the creation of a provably more equitable and resilient transaction sequencing environment, reducing the financial incentive for latency-based adversarial behavior and moving L2 architecture toward a more robust, decentralized standard.

A polished silver-metallic, abstract mechanical structure, resembling a core processing unit, is surrounded by numerous translucent blue spheres. Many of these spheres are interconnected by fine lines, creating a dynamic, lattice-like pattern interacting with the metallic mechanism

Context

Before this research, the prevailing strategy for mitigating MEV in centralized Layer-2 sequencers was the FCFS policy, which guaranteed order fairness based on transaction receipt time. However, this established model created a new attack surface → it incentivized users to spam transactions to ensure early inclusion and inherently favored users with the lowest network latency to the sequencer, enabling a form of time-based front-running that undermined the policy’s intended fairness. The theoretical limitation was the inability of a strict, continuous FCFS model to account for the physical realities of network latency variance.

The image displays a detailed perspective of modular electronic connectors, featuring transparent segments revealing internal components, seamlessly joined by opaque white housing units. These interconnected modules are part of a sophisticated hardware system

Analysis

The core idea is to move from a continuous-time ordering system to a discrete-time, batched system. The new primitive, Fairness Granularity ( g ), defines a small time window where all transactions received are conceptually considered to have arrived at the same instant. Instead of using the exact receipt timestamp, the algorithm first orders transactions based on their assigned g -interval, and then uses a non-latency-dependent method, such as random selection or an auction, to order transactions within the interval. The critical difference is the use of the network’s calculated burst period → the average time between two consecutive trade events → to statistically determine the optimal size of g , thereby making the batching interval responsive to actual network activity and maximizing the policy’s fairness.

The image displays a detailed, close-up perspective of a complex electronic circuit board, featuring a prominent central processor unit. Its metallic silver surface is intricately designed with numerous pathways and components, highlighted by glowing blue elements within its core and surrounding infrastructure

Parameters

  • Key Metric – Accuracy to Ideal Ordering → ~70% for Arbitrum One network. Explanation: This percentage quantifies how closely the proposed ordering aligns with the theoretical, unmanipulated chronological order of transaction generation times, even with varying network delays.
  • Core Measurement – Burst Period → The average duration between the reception times of two consecutive transactions at the sequencer node. Explanation: This statistical measure is used to determine the optimal size of the Fairness Granularity interval ( g ) for a specific network.

A dynamic, close-up view reveals an intricate mechanical core, composed of metallic silver and deep blue components, featuring a large gear-like outer ring with numerous vertical fins. Interacting with this structured mechanism is a vibrant, light blue, bubbly, organic-textured substance, flowing and connecting around the central elements

Outlook

The introduction of a statistically derived fairness metric and its application to transaction ordering opens new avenues for mechanism design research, moving beyond simple FCFS. In the next 3-5 years, this theoretical framework is likely to be integrated into decentralized sequencer designs, providing a quantifiable fairness parameter that can be formally verified. This will unlock the potential for truly fair, decentralized transaction sequencing on L2s, where the protocol, rather than a user’s geographical proximity or computational resources, governs the equitable inclusion of value-transfer operations.

A close-up shot captures a complex, futuristic mechanical core featuring four white, aerodynamic blades arranged symmetrically around a central circular hub. This mechanism is encased within a brilliant, translucent blue structure, showcasing intricate internal components and subtle glowing light

Verdict

This research provides the foundational, quantifiable mechanism required to translate the abstract principle of fair transaction ordering into a practically implementable and provably MEV-resistant protocol primitive.

Transaction ordering fairness, Maximal Extractable Value, MEV mitigation, Layer-2 rollups, FCFS policy, Sequencer centralization risk, Front-running prevention, Burst period estimation, Transaction batching, Decentralized finance security, Latency optimization, Cryptoeconomic mechanism design, Batch order fairness, Network latency variance Signal Acquired from → ieee.org

Micro Crypto News Feeds